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Abstract
Environment sensing is a fundamental task in mobile aug-
mented reality (AR). However, on-device sensing and com-
puting resources often limit mobile AR sensing capability,
making high-quality environment sensing challenging to
achieve. In recent years, in-context sensing, a new sensing
system design paradigm, has emerged with the promise of
achieving accurate, efficient, and robust sensing results. In
this work, we first formally define the in-context sensing
design paradigm. We summarize its primary challenges as
the uncertainty of environmental information availability. To
quantify the impact of sensing context data, we present two
in-depth case studies that show how it can impact different
aspects of mobile AR sensing systems.

CCS Concepts
• Computing methodologies→Mixed / augmented re-
ality; • Human-centered computing → Ubiquitous and
mobile computing systems and tools.
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1 Introduction
Understanding the physical environment is a fundamental
task for mobile augmented reality (AR), which aims to in-
tegrate virtual and physical content seamlessly. This goal
requires accurate and robust environment sensing across
multiple properties, including, but not limited to, device mo-
tion, object distances, and environmental lighting [9]. The
quality of environment sensing directly contributes to the
mobile AR user experiences. For example, camera depth infor-
mation is often needed to place virtual objects at the correct
distance in virtual try-on applications [27].

Traditional AR systems typically rely on computer vision
methods to extract the environment information from the
current AR device camera image [4]. However, as a single
input source, the current camera image often does not offer
sufficient environmental information to support the desired
immersive mobile AR user experiences. As the software and
hardware ecosystem evolves, mobile AR environment sens-
ing systems have started shifting to taking more comprehen-
sive environment information from multi-sensor and multi-
modal inputs. Unfortunately, sensing systems on mobile AR
devices are often constrained by many physical limitations in
computing and sensory devices, rendering the raw on-device
sensing power insufficient to match the complexity of the
physical environment.
More recently, new research works have started to lever-

age contextual information from user, device, and environ-
ment elements to improve mobile AR sensing systems’ capa-
bility [7, 19, 31]. In later sections, we refer to this context-
aware environment-sensing paradigm as in-context sensing.
By leveraging information from the sensing context, the in-
context sensing design promises a future of AR environment
sensing with better accuracy, efficiency, and robustness. In
§2, we present a formal definition of the in-context sensing
design paradigm.
However, adopting the in-context design for mobile AR

sensing systems also presents unique challenges in acquir-
ing and managing context data. Through a comprehensive
survey of environment sensing tasks and AR system design
support, we summarize the primary challenge of in-context
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Table 1: A survey of in-context environment-sensing system design and their context data usage.

Category Paper Sensing Context Data Sensing Context Data Contribution
Modality Multi-timestamp Accuracy Robustness Efficiency

Device Tracking ORB-SLAM3. [3] Acceleration, Orientation ✗ ✓ ✓ N/A
Kimera-VIO. [17] Acceleration, Orientation ✗ ✓ ✓ N/A

Object Detection Zhang, Zhishuai, et al. [28] Semantics ✗ ✓ N/A N/A
Chen, Chenglizhao, et al. [6] Depth ✗ ✓ N/A ✓

Object Tracking BundleTrack [22] Depth ✓ N/A N/A N/A
BundleSDF [23] Depth ✓ ✓ ✓ N/A

Lighting Estimation Xihe [30] Depth, Device Pose ✓ ✓ ✓ ✓

LitAR [31] Device Pose, Ambient Light, Depth ✓ ✓ ✓ N/A

Depth Estimation Sparse SPN [21] Device Pose ✓ N/A N/A ✓

Sartipi et al. [18] Device Pose ✓ ✓ N/A ✓

sensing system design as the uncertainty of environment in-
formation availability. In other words, although critical envi-
ronment information may be presented and extracted from
sensing context data, their presence is not guaranteed. In §3
and §4, we present two case studies to investigate: (i) how
could different environment context data presence impact
the accuracy of environment sensing? And (ii) what sys-
tematic designs can be made to address the uncertainty of
context data? Our investigation looks into two representative
sensing tasks: metric depth estimation, a task that demands
precise environment observations, and lighting estimation, a
task that requires broad environment observations.
In the first task, we investigate how metric depth esti-

mation accuracy varies when metric depth estimation mod-
els are deployed to AR devices with different camera focal
length configurations. We also show how the accuracy and
efficiency of metric depth estimation models can be reliably
improved by using camera parameter information and sim-
ple controls of camera focal length. In the second case study,
we investigate how accumulated environment observation
point clouds can contribute to the lighting estimation task.
Compared to natural user mobility in an object placement
task, lighting estimation accuracy can improve up to 40%
with guided user movements. Similarly, point cloud sharing
between nearby users can improve the estimation accuracy
significantly by 33%. In both experiments, the interaction
between the lighting estimation task and the information
provides shows promising aspects of in-context sensing.

We summarize our main contribution as follows:
• We present a formulation of in-context environment sens-
ing, an emerging environment sensing design paradigm
for mobile AR that promises higher environment sensing
quality with better accuracy, robustness, and efficiency.

• We present a survey on recent context-aware environment
sensing system design and identify the primary design
challenge as the uncertainty of environment information
availability.

• We present two case studies on representative in-context
sensing system designs of metric depth estimation and
lighting estimation. Through the studies, we identify three
opportunities to address the primary challenge: (i) sensory
device manipulation, (ii) guided user mobility, and (iii)
connected context sources.

2 Promises and Challenges
Pioneer research in context-aware AR systems demon-
strated that important environment information can be ex-
tracted from camera frames for task planning and decision-
making [20]. Taking inspiration from the prior research on
how context can augment the sensing process, we define
mobile AR in-context environment sensing as:

An environment sensing process that combines current AR
camera image with information retrieved through interactions
with an AR device, user, and environmental elements.

Broadly, sensing context data can be collected from on-
device or externally connected sensors throughout the AR
application session.

Promises of sensing context data. Table 1 summarizes
our survey on recent mobile AR environment sensing sys-
tems with their respective usage of context data. We make
several key observations from this survey. First, sensing con-
text data improves sensing accuracy. Many systems utilize
multi-modal and multi-timestamp context data to provide
complementary information to camera image data. For exam-
ple, device pose data generated by IMU sensors are often used
in metric depth estimation systems to reduce the ambiguity
of metric scale estimation [11, 12, 26]. These complementary
data often provide information that is hard to extract from
camera images. In particular, we have noticed device tracking
and camera depth data are used across several sensing cate-
gories, potentially due to their critical role in reconstructing
spatial and temporal environments.

Secondly, we noticed that sensing context data contributes
to the overall robustness of the sensing system. In sensing
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tasks with temporal optimizations, such as VI-SLAM sys-
tems [3, 17], the improvement of device tracking accuracy
is associated with increased historical views. Additionally,
awareness of environmental factors, such as localization data,
can help reduce the ambiguity of the sensing goal. This in-
formation can be leveraged to help sensing systems adapt to
different environments. For example, the estimation meth-
ods often differ for lighting estimation between indoor and
output scenes [15, 16, 31].
Thirdly, sensing context data also contributes to the effi-

ciency of environment sensing systems. As mobile AR sens-
ing context data provides an understanding of the environ-
ment information, historical context can often be reused
even when the device is moved to new positions. Some en-
vironment information, such as 3D geometry, can often be
extracted from environment mapping results in sensing con-
text data [29]. This information can help to reduce the de-
pendencies of complicated 3D geometry processing in many
DNN-based sensing systems and reduce the complexities of
the DNN model. Additionally, reusing sensing context data
can reduce sensory device activation [18], potentially saving
mobile AR system power consumption.
Lastly, although sensing context contributes to overall

accuracy improvements, common grounds of system-wide
sensing context support has not been reached. We noticed
that, although on-device sensor data can be directly lever-
aged for environment-sensing tasks, interacting between
custom sensing systems and the sensors is difficult due to
the limitations in hardware access. On the one hand, this lim-
itation protects the information privacy of AR users [14, 19].
On the other hand, it prevents AR developers and researchers
from building more sophisticated sensing systems. Allowing
safe and flexible sensor hardware access to sensing systems
is one of the primary open research questions. Additionally,
cross-device connectivity is often limited to specific devices
or proprietary solutions on current AR systems.

Primary challenge. Supporting in-context environment
sensing is a difficult task with challenges ranging from multi-
ple aspects, including data quality, network connectivity, and
computational efficiency. Here, we summarize the primary
challenge as the uncertainty of environment information avail-
ability. In other words, the availability of sensing context
data strongly depends on the interactivity between sensing
tasks and information providers, causing uncertainty in the
overall sensing quality. A main impacting factor is the in-
tended usage behavior of AR applications. In particular, the
trajectory of the user’s movement is usually influenced by
the AR applications’ design rather than the user’s interest in
environment sensing. For example, maximizing environment
observation coverage through a moving camera is a key goal

in achieving high-quality environment tracking and light-
ing estimation. Mismatched mobility interests usually cause
harm to the quality of environmental sensing as they limit
the environmental observation coverage, blur camera mo-
tions, and cause sensor drifts. Solving this challenge requires
new system designs that model the uncertainty of sensing
context and provide new ways of ensuring its quality, such
as multi-sensor collaboration or guided user mobility.

3 Case Study: Metric Depth Estimation
Metric depth estimation plays an important role in AR appli-
cations, enabling the seamless integration of virtual objects
into the physical world. However, single image depth estima-
tion models, a simple and popular method for depth sensing,
often face challenges like scale ambiguity, overfitting to spe-
cific camera models, and high model complexity, as discussed
in our previous work [10] and various studies [11, 12, 26]. In
this case study, through analyzing recent works, we demon-
strate that high-quality depth estimation results on mobile
AR can be achieved using camera parameters and simple
controls of camera focal length.

Experiments Setup. For our experiments, we used
three state-of-the-art (SOTA) models: ZoeDepth-M12-N [2],
DepthAnything [24], and HybridDepth [8]. The first two
are heavy and large single-image depth estimation models,
while HybridDepth is a depth model that utilizes additional
camera data (focal stack) for depth estimation. In particular,
the focal stack is a set of images created with intentional
manipulation of camera focus distances. We use this hard-
ware manipulation method to demonstrate howmetric depth
estimation tasks can interact with device hardware.
We selected the ARKitScenes [1], an AR-focused dataset

captured with mobile cameras. We loaded the models with
the provided pre-trained weights and evaluated them on the
official evaluation set of ARKitScenes. All evaluations were
performed on an NVIDIA RTX 4090 GPU. We processed and
resized the input images to the desired size for each model
before feeding them into the models. To measure inference
time, we recorded the average inference time of each model
on the ARKitScenes dataset’s evaluation set.

Device hardware-awareness. (1) Scale Ambiguity. Single
Image Depth models cannot reliably determine the absolute
scale of objects within a scene. This scale ambiguity arises
because the models rely solely on visual cues without addi-
tional context, leading to inaccuracies in depth prediction.
Even human eyes can be misled into thinking that the last
two photos are taken at the same distance, but the actual
measurements reveal that these images were taken at two dif-
ferent distances. This discrepancy occurs due to the nature of
camera intrinsics, which include parameters like focal length
and sensor size. These intrinsic parameters influence how
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Ground Truth Metric3D ZoeDepth

Figure 1: Visual examples of metric depth estimation
results. Camera parameters provide important cues on met-
ric depth estimation. With this information, Metric3D [13]
significantly outperforms ZoeDepth [2], which uses only a
single image as the input data.

the 3D world is projected onto the 2D image plane, causing
similar objects at different distances to appear the same size.
Without additional contextual information, such as focus dis-
tances or multiple viewpoints, the depth estimation model
cannot resolve these ambiguities.
(2) Overfitting to Specific Camera Models. Single image

depth models are often tailored to the characteristics of the
training dataset, which typically involves images captured
by specific camera models with a unique focal length and
sensor size. As we discussed in the first challenge, this will
cause some scale problems if we use a camera different from
the training dataset. For instance, Figure 1 compares two
depth models: Metric3D [12, 26], which integrate camera
parameters during training, and ZoeDepth [2], which relies
only on visual information. The same scene and objects were
captured using two different mobile cameras with distinct
camera parameters. ZoeDepth [2], which relies solely on
visual data, shows significant variation in its measurement of
the object (keyboard), with the perceived size changing based
on the camera used, resulting in high errors compared to the
ground truth values (yellow). Conversely, Metric3D, which
incorporates camera parameters as additional data, produces
more stable and robust results. Another interesting issuewith
relying solely on visual data is the impact of different viewing
angles, which can significantly affect depth estimation. This
reliance on specific camera models and solely visual data
leads to poor generalization when the models are applied
to images from different cameras or environments, which
questions their capability in AR scenarios.
(3) Model complexity and inference time. Based on our ex-

periments and recent works [8, 12, 26], we realized that in-
corporating additional data can address the mentioned chal-
lenges of scale ambiguity and overfitting. Furthermore, it
can lead to more accurate and robust depth estimation with
smaller and faster models, which are more mobile-friendly

Table 2: Zero-shot evaluation comparison of current
state-of-the-art (SoTA) models, trained on NYU Depth
V2, on the ARKitScenes validation set. Bold indicates
the best results.

Model RMSE ↓ AbsRel ↓ #Params ↓
ZoeDepth-M12-N [2] 0.61 0.33 344.82M
ZeroDepth [11] 0.62 0.37 233M
DepthAnything [24] 0.53 0.32 335.79M
HybridDepth [8] 0.367 0.40 65.6M

Table 3: Performance comparison of the three SOTAmod-
els on Nvidia RTX 4090. Bold values represent the best
results.

Model Inference time Size #Params

ZoeDepth-M12-N [2] 86 ± 6 ms 1.28 GB 344.82M
DepthAnything [24] 57 ± 5 ms 1.25 GB 335.79M
HybridDepth [8] 25 ± 2 ms 0.24 GB 65.6M

and better suited for real-time AR scenarios. As shown in
Tables 2 and 3, the HybridDepth model demonstrates ex-
cellent zero-shot performance on AR-specific datasets such
as ARKitScenes [1]. Specifically, HybridDepth achieved an
RMSE of 0.367 and an AbsRel of 0.40 with only 65.6 million
parameters, significantly outperforming other SOTA models
such as ZoeDepth-M12-N and DepthAnything, which have
larger model sizes and more parameters.
In terms of inference time and model size, HybridDepth

also excels. It has an average inference time of 25 ± 2 ms,
which is approximately 65% faster than DepthAnything (57 ±
5 ms) and 71% faster than ZoeDepth-M12-N (86 ± 6 ms). The
model size of HybridDepth is 0.24 GB, which is around 81%
smaller than DepthAnything (1.25 GB) and ZoeDepth-M12-
N (1.28 GB). This demonstrates that integrating additional
data sources, such as focus distances and focal lengths, can
produce smaller, faster, and more efficient models without
compromising accuracy, resulting in more robust and accu-
rate depth estimation.

Key Takeaway: Hardware parameters, e.g., camera focal
length, present important opportunities for building accurate,
efficient, and robust in-context sensing systems. Acquiring
context information from intentionally manipulated hard-
ware, such as depth from defocus clues, has shown to be a
promising way to create reliable context data.

4 Case Study: Lighting Estimation
Lighting estimation is a fundamental environment-sensing
task that estimates omnidirectional lighting from limited
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Figure 2: Overview of our simulation environment semi-
synthetic data generation process.

environment observations. It plays an important role in ren-
dering visually coherent virtual objects for mobile AR ap-
plications. In this section, we investigate how in-context
lighting estimation systems can improve sensing quality by
interacting with AR users and external sources. Specifically,
we focus on two application scenarios where context data
are collected: (i) guided user movements and (ii)Multi-user
sensing context data sharing.

Simulation environment setup. We use a simulation-
based approach to control user mobility and evaluate its
impact on lighting estimation. To address the difficulties in
minimizing the synthetic-to-real gaps, we present a novel
approach to facilitate the process by using a semi-synthetic
simulation-based experiment environment. Specifically, our
experimentation design differs from traditional simulation-
based experiments in two key respects: (i) photorealistic ren-
dering and (ii) physically-accurate human modeling. First, we
set up the simulation environment with the RCareWorld [25]
platform and high-fidelity assets from Matterport3D [5]. The
scanned 3D rooms simulate the indoor environment where
our experiments will occur. Next, to produce a realistic sim-
ulation of device camera movements, we use the human
avatars RCareWorld [25]. In this human-centric simulation
environment, the human avatar joints are derived from clin-
ical data. Last but not least, we set the virtual AR device to
use a real-world mobile phone (iPhone 14 Pro) form factors
and camera parameters.
To generate our experiment data, we manually selected

12 different environment positions in the simulated room

to execute the virtual object placement task. For each place-
ment position, we apply an animation on the avatar’s wrist
joint to simulate the look-around moving pattern. We illus-
trate the data generation process in Figure 2. Throughout the
entire interaction, we extracted the camera pose, RGB, and
depth images. To allow quantitative evaluation of the lighting
estimation environment understanding task, we have also ex-
tracted the ground truth environment map at the placement
position using a virtual panoramic camera in Unity. To sim-
ulate the multi-user scenario, we manually set each engaged
user to stand around the placement position in a circular
formation. In total, we generated 36 sets of experiment data,
each containing 150 frames of camera pose, RGB, and depth
images. Our simulation-based experiment combines photore-
alistic rendering with physically accurate human modeling,
representing a step forward in flexible and controllable AR
experiment design.

To test the AR system’s performance in real-world scenar-
ios, we perform the AR virtual object placement task, which
represents one of the most common use cases of mobile AR,
e.g., virtual furniture shopping. The workflow of this task
involves a participant using an AR application to place a
virtual object on a physical environment surface, e.g., a room
floor, and move around their AR device to observe the ob-
ject. During the process, we require the participants only to
move their hands and arms and keep the AR device looking
at the virtual object placement position from different an-
gles. This movement simulates the "look-around" patterns in
the AR application. This task represents a challenging envi-
ronment understanding scenario where the AR systems are
required to leverage the device mobility to discover the most
environment information to deliver a plausible experience.

Guided user mobility.We first measure the impact of en-
vironment observation coverage in the single-user scenario
with different user mobility patterns when executing the ob-
ject placement task. For each selected placement position, we
use the generated camera RGB, depth, and tracking data to
simulate the sensory data stream available to the AR device.
We removed LitAR’s environment observation constraints,
i.e., the number of environment observations to keep, to test
its full capabilities of lighting estimation. Figure 4a shows
the LitAR-generated environment map PSNR changes during
the application time. On average, LitAR with environment
point cloud collected by guided user mobility outperforms
the baseline, where only the current camera frame is used
(i.e., without context data), but by only 0.9db PSNR. This is
largely due to the imperfect context data capture process, i.e.,
only relying on the user’s hand movements. Upon manually
inspecting the camera images and movements, we found
that although the virtual object surrounding environment is
clearly captured by the AR device camera, the user’s hand
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Figure 3: The impact of guided context collection. Guided
context collection outperforms multi-user context sharing
by 10% while using only 33% of the memory.
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Figure 4: The impact of contextual environment obser-
vation.We show that accumulating environment observa-
tions over time pose positive but limited feedback on the
lighting estimation performance. In the multi-user scenario,
inter-user observation sharing allows significant lighting
estimation performance improvement.

movements only induce overlapped views, resulting in only
a small amount of observation coverage increase.
Finally, we test the impact of context data collected by

guided user movement. Before executing the virtual object
placement task, we collect environment observation data us-
ing the bootstrappingmovement pattern introduced in LitAR.
During the guided movement, LitAR collects large coverage
environment observations and converts them into sparse
point clouds. Figure 3a compares the lighting estimation per-
formance difference. We see that guided context collection
leads to better performance when compared to opportunistic
context collection. For example, it outperforms multi-user
context sharing by 10%. Additionally, when comparing the
performance of using full environment observations, guided
context collection has only 0.5db lower PSNR. Furthermore,
guided context collection only incurs 33% of the memory us-
age when compared to the multi-user scenario. This suggests
the need for using a well-designed context-capturing process
rather than just naively relying on multi-user sharing.

Near-by multi-user context sharing. Next, we test the
multi-user scenario where three users are engaged in the
virtual object placement task and share environment obser-
vations with each other. In this scenario, environment point
clouds are collected from user movement and multi-user
sharing. Figure 4b compares the lighting estimation perfor-
mance.We observe that by sharing environment point clouds
from multiple users, the lighting estimation performance sig-
nificantly improves by an average of 40%, compared to the
single-user scenario. This is because the multi-user scenario
can capture point clouds from different angles, which leads
to higher environmental coverage. In practice, we believe
the multi-user application scenario can be extrapolated to
more generalized multi-source context data collection cases,
such as edge IoT-assisted AR [19], multi-application context
sharing, and multi-time context sharing.

Key Takeaway: Constructing multi-view environment ob-
servations, e.g. point cloud, can be beneficial to some envi-
ronment sensing tasks. The natural user mobility in AR ap-
plications, however, may misaligned with the optimal move-
ment for environment scanning. Actively instructing users
with low-disruptive movement and retrieving shared envi-
ronment observations from nearby devices can create more
helpful context for in-context sensing.

5 Conclusion and Future Work
In this paper, we investigate the promises and challenges
of in-context environment sensing for mobile AR. We first
define the in-context sensing task and survey how recent
sensing systems use sensing context data regarding the data
characteristics and their contributions. Then, through two
case studies, we quantified the benefits of the impacts of
sensing context awareness on metric depth estimation and
lighting estimation. We summarize three promising opportu-
nities to address context uncertainty challenges: (i) sensory
device manipulation, (ii) guided user mobility, and (iii) con-
nected context sources. Due to the limitations of the human
models in the current simulation environment, our current
evaluation is limited to simple modeling of human joints.
In the future, we plan to enhance the simulator by adding
human muscle models to better simulate user movement and
thus quantify different context data benefits.
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